

Always choose the closest answer.

1-4 A researcher has specified the model

response to med = $y = b_0 + b_1 x_1 + b_2 x_2 + \text{error}$

 x_1 = sensitivity to trial dose

 x_2 = body weight

100 subjects are each measured for y, x_1 , x_2 . The resulting data give

R = 0.9

 $S_{V} = 0.36$ $\hat{b}_{0} = 0.6$ $\hat{b}_{1} = 0.3$ $\hat{b}_{2} = -0.2$

1. The fraction of s_y^2 explained by regression. a) .67 b) .79 c) .87 d) .93 e) .98

2. The regression prediction \hat{y} for the response of a subject having sensitivity 0.7 and weighing 178. a) 0.37 b) 0.47 c) 0.57 d) 0.67 e) 0.77 $6 + 6/\chi_1 + 6/\chi_2$

·6 +(·3) ·7 +(-.2)/.78 = ·454

3. Suppose the plot is elliptical. For the group of all subjects having sensitivity 0.7 and weighing 1.78 what is the mean of y-scores?

(a) 0.47 /b) 0.57 c) 0.67 d) 0.77 e) 0.87

SAME 15(2) = .454

4. Suppose the plot is elliptical. For all subjects having sensitivity 0.7 and weighing 1.78 what is the standard deviation of y-scores?

a) 0.05 (b) 0.15 (c) 0.20 d) 0.25 e) 0.3

= 157

VI-R2 dy = VI-092 (.36)

5. Give the estimated margin of error for \overline{y} assuming the sample is random and the FPC is near one.

FPC is near one.
a) 0.03 b) 0.08 c) 0.11 d) 0.18 e) 0.26 $\frac{1.96}{1.96}$

- 6. Range of R.

a) [-1, 1] b) [-.5, .5] c) [-.25, .25] d) [0, 1]

= 020

7. Casting straight line regression as MLR, what is the matrix of inputs for a straight line regression with (x, y) data points (1, 5), (2, 2), (3, 1)?

a) {{1, 2, 3}, {5, 2, 1}} b) { {1, 1, 5}, {1, 2, 2}, {1, 3, 1} } c) $\{\{1,1\},\{1,2\},\{1,3\}\}\)$ d) $\{5,2,1\}$